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ABSTRACT 

Background and Objective: Vibroarthrography (VAG) is a method developed for 

sensitive and objective assessment of articular function. Although the VAG method is 

still in development, it shows high accuracy, sensitivity and specificity when 

comparing results obtained from controls and the non-specific, knee-related disorder 

group. However, the multiclass classification remains practically unknown. Therefore 

the aim of this study was to extend the VAG method classification to 5 classes, 

according to different disorders of the patellofemoral joint.  

Methods: We assessed 121 knees of patients (95 knees with grade I-III 

chondromalacia patellae, 26 with osteoarthritis) and 66 knees from 33 healthy 

controls. The vibroarthrographic signals were collected during knee flexion/extension 

motion using an acceleration sensor. The genetic search algorithm was chosen to 

select the most relevant features of the VAG signal for classification. Four different 

algorithms were used for classification of selected features: logistic regression with 

automatic attribute selection (SimpleLogistic in Weka), multilayer perceptron with 

sigmoid activation function (MultilayerPerceptron), John Platt's sequential minimal 

optimization algorithm implementation of support vector classifier (SMO) and random 

forest tree (RandomForest). The generalization error of classification algorithms was 

evaluated by stratified 10-fold cross-validation. 

Results: We obtained levels of accuracy and AUC metrics over 90%, more than 93% 

sensitivity and more than 84% specificity for the logistic regression-based method 

(SimpleLogistic) for a 2-class classification. For the 5-class method, we obtained 69% 

and 90% accuracy and AUC respectively, and sensitivity and specificity over 91% 

and 69%.  
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Conclusions: The results of this study confirm the high usefulness of quantitative 

analysis of VAG signals based on classification techniques into normal and 

pathological knees and as a promising tool in classifying signals of various knee joint 

disorders and their stages. 

 

Keywords: Vibroarthrography; Joint motion quality; Machine learning 
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1. Introduction 

Vibroarthrography (VAG) is an experimental method developed for noninvasive 

assessment of articular function, especially arthrokinematics. The VAG method is 

based on the analysis of high frequency vibroacoustic emission, which is a natural 

phenomenon acquired from the relative motion of articular surfaces of the synovial 

joint (diarthrosis) [1-3]. In physiological conditions, articular surfaces covered by 

hyaline cartilage are smooth and slippery, which determines optimal arthrokinematic 

motion quality [1,4]. In contrast, degenerated cartilage results in greater friction 

during movement, which is reflected in an increase in amplitude and frequency of the 

VAG signal [2]. Chondral lesions (such as chondromalacia or osteoarthritis) are often 

observed in a patellofemoral joint (PFJ), a part of the knee joint complex, which can 

be explained by its specific biomechanical environment and substantial involvement 

in daily/sports activity. Due to this but also due to having the greatest susceptibility to 

the VAG test resulting from a superficial position, the knee is the joint most commonly 

analyzed by VAG. 

Although the VAG method is still in development, it shows high accuracy, 

sensitivity and specificity, when comparing results obtained from controls and a non-

specific, knee-related disorder group [5]. Nalband et al. [6] applied the least square 

support vector machines algorithm based on the time-complexity parameters of the 

VAG signal and obtained greater than 94% classification accuracy, greater than 98% 

sensitivity and 86% specificity [6]. Kim et al. [4] presented classification of the neural 

network with frequency parameters as inputs, which allowed for improvement of the 

accuracy to more than 95%, sensitivity 92% and specificity of more than 98% [4]. The 

best results of the normal-abnormal classification signal are found in the work of 

Rangayyan et al. [7]. The authors used a classifier based on a radial basis function 
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network with statistical parameters in the time domain. Here, the accuracy, sensitivity 

and specificity reached 100%, with the cross-validation of the leave-one-out method 

[7].  

 Nevertheless, it should be noted that the mentioned authors based their analysis 

only on two classes, normal and abnormal. However, from a clinical point of view, the 

2-class classification is insufficient for an appropriate diagnostic process and further 

adequate treatment, and a more specific categorization of chondral-related changes 

is necessary [8]. Similarly, the radiological staging of chondral disorders (especially 

early stages, such as chondromalacia) using X-ray also possess significant 

limitations, due to the low sensitivity and specificity [9]. On the other hand, availability 

of modern imaging methods such as magnetic resonance imaging (MRI) is limited 

due to the high expense [9]. Moreover, current diagnostic methods are entirely 

observer-dependent and require significant knowledge, expertise, and time. 

Therefore, due to the constantly increasing incidence of age-related cartilage lesions, 

there have been calls for the development of noninvasive, observer-independent and 

financially accessible methods for evaluation of human joints, with sensitivity and 

specificity comparable with MRI, considered the gold standard for chondral lesion 

assessment. 

Recently it has been demonstrated that the VAG method could be helpful in 

differentiating particular disorders of the PFJ and its stages, due to the specific, 

disorder-related character of the VAG signal pattern [2,9]. However, while the 

problem of classification of normal and abnormal VAG signals has been studied, 

extending it to a multiclass classification remains practically unaddressed. Moreover, 

as previously suggested, further work is needed to determine whether the sensitivity 

and specificity of the VAG method are sufficient for clinical application [10]. 
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Furthermore, there is a pressing need for description of optimal algorithms for VAG 

signal multiclass classification, in accordance with the clinical criteria of PFJ chondral 

lesions [Nalband]. Optimization of diagnostic methods should include the selection of 

the most relevant and discriminating VAG signal parameters, followed by selection of 

an optimal predictive model [11-14]. This will allow us to develop an observer-

independent, sensitive, computer-aided diagnostic method, useful for clinicians, in 

particular for orthopedists and physiotherapists, who are concerned with evaluation of 

the quality of arthrokinematic motion during physical examination [1]. 

Thus, the primary goal of our study will be to extend the VAG signal categorization of 

various PFJ chondral lesions to a 5-class classification (normal and four classes of 

disorders). Our analyses will be performed with respect to the MRI examination, as a 

reference method of noninvasive assessment of chondral lesions, which will allow us 

to evaluate the sensitivity and specificity of the VAG method. For the optimization 

problem, we applied two algorithms for selecting the best parameters: genetic search 

and selection based on simple regression functions. Then we compared four 

classification models representing different approaches to the classification problem: 

logistic regression with automatic attribute selection based on simple regression 

functions, multilayer perceptron with sigmoid activation function, sequential minimal 

optimization algorithm implementation of support vector machine classifier and 

random forest tree. 

The paper is structured as follows: Section 2 describes the analyzed material and the 

methodology of the study, including the feature extraction techniques, feature 

selection algorithms and classification methods. Section 3 presents the obtained 

results, which are discussed in Section 4. Finally, Section 5 presents our conclusions. 
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2. Materials and methods 

2.1. Participants 

121 knees from 56 patients with chondromalacia patellae (CMP) (38 with 

bilateral and 20 with unilateral symptoms) and 16 patients with osteoarthritis (OA) (10 

with bilateral and 6 with unilateral symptoms) were enrolled in the study. Knees with 

CMP were classified into 3 grades according to criteria of the International Cartilage 

Repair Society by MRI imaging: CMP stage I (28 knees; CMPI), CMP stage II (31 

knees; CMPII) and CMP stage III (36 knees; CMPIII) [2,9]. OA patients were selected 

from clinical/radiological data and the fulfillment of the American College of 

Rheumatology Subcommittee derived criteria [9]. All patients were recruited from the 

outpatient populations of the Opole Voivodship Medical Centre, Poland. Both knees 

from patients with bilateral symptoms were assessed, and only the symptomatic knee 

from patients with unilateral symptoms was analyzed. 

66 knees from 33 healthy volunteers possessing neither knee disorders nor 

pain (analyzed in the physical examination but without radiological exclusion of the 

cartilage pathologies) served as a control group (CON). Acute inflammation of the 

knee joint as well as a history of meniscal tear, knee ligament/tendon ruptures, 

muscle injuries and traumas excluded individuals from the study. For detailed 

characteristics of subjects see Table 1. 

Qualification for the research and the VAG assessments were performed by the 

same research team, which included a medical doctor, a senior physiotherapist, a 

bachelor of physiotherapy and a technician. The project was approved by the Ethics 

Committee of Opole Voivodship. Signed informed consent was obtained from all 

tested persons. 
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TABLE 1. Characteristics of analyzed subjects and knee cases. 

 

  
N Males/Females 

Age [years] Height [cm] Weight [kg] 

mean (SD) mean (SD) mean (SD) 

         

Subjects      

 Controls 33 12/21 37.6 (6.6) 169.2 (7.9) 69.8 (12.2) 

 With CMP 56 19/37 39.5 (7.2) 168.6 (7.1) 71.9 (12.4) 

 With OA 16 5/11 41.5 (8.2) 168.6 (8.8) 70.2 (13.8) 

      

Knees      

 Controls 66 24/42 - - - 

 With stage I of CMP  28 13/15 - - - 

 With stage II of CMP  31 8/23 - - - 

 With stage III of CMP 36 9/27 - - - 

  With OA 26 8/16 - - - 

Abbreviations: N, number of cases; CMP, chondromalacia patellae; OA, osteoarthritis 

 

2.2. Experimental Procedure 

For each knee, assessment of PFJ quality of motion was performed in an open 

kinetic chain in flexion/extension motion using an acceleration sensor as described 

previously [2,9]. Briefly, for each knee, assessment of the VAG signal was performed 

with a sensor placed, in a seated position, 1 cm above the apex of the patella. The 

following procedure was performed: (i) loose hanging legs with knees flexed at 90°; 

(ii) full knee extension from 90° to 0°; (iii) re-flexion (from 0° to 90°) in a sitting 

position, four times in a 6-second period. Both flexion/extension motion and 

measuring condition constant velocities were maintained at 82 beats per minute with 

a metronome. Data were recorded at sampling frequency 10 kHz and then filtered 

using a fourth-order zero-phase Butterworth band-pass digital filter with cutoff 

frequencies between 50 Hz and 1000 Hz (Figure 1).  
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Fig. 1 - Band-pass filtered time series specific for particular group: A) Control, B) 

CMPI, C) CMPII, D) CMPIII, E) OA. 

 
2.3. Signal feature extraction 

The variability of the VAG signal in the time domain was assessed by computing 

following parameters:  

1) the mean-squared values of an obtained signal in fixed-duration segments of 5 ms 

each and then computing the variance of the values of the parameter over the entire 

duration of the signal (VMS) [15], 

2) signal amplitude was calculated as the difference between the mean of four 

maximum values and the mean of four minimum VAG signal values (R4) [9]. 

VMS and R4 were computed using custom made MATLAB (MathWorks, Natick, MA) 

functions. 

The signal complexity was evaluated by several features:  

1) form factor (FF) computed as the ratio of mobility of the first derivative of the signal 

to the mobility of the signal itself (where the mobility denotes the square root of the 
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ratio of the variance of the first derivative of the signal to the variance of the original 

signal) [16], 

2) Shannon entropy (SHE) based on the probability density function (PDF) of the 

given signal, denoted by px(xl), with xl, l = 0, 1, 2, . . . , L − 1, representing L = 248 

bins used to represent the range of the values of the signal 𝑥 and which is a measure 

of the nature and spread of the PDF and defined as a sum of px(xl) multiplied by log 

px(xl) [16], 

3) turns count (TC) based on detection of changes in amplitude larger than 0.5 times 

standard deviation of VAG signal [15], 

4) the fractal scaling index (DFA) computed with the detrended fluctuation analysis 

algorithm (time scales from 4 to N/4, where N is the number of VAG signal data 

points) [17], 

5) multiscale sample entropy (MSE) computed over 23 time scales (S7-S30) and 

area under the sample entropy (m=2 and r=015% of standard deviation) vs. time 

scale curve (Figure 5) [18]. 

FF, SHE and TC were computed using the MATLAB WAFO Toolbox 

(http://www.maths.lth.se/matstat/wafo) and the BIOSIG toolbox (http://biosig.sf.net). 

DFA and MSE were computed using software available at http://www.physionet.org. 

Moreover, we quantified nonlinear information in the VAG signal by recurrence 

quantification analysis (RQA) [19,20]: 

1) recurrence rate (RR), which is measure of the density of recurrence points in a 

recurrence plot of the phase space trajectory of the system, 

2) determinism (DET) quantifies the fraction of recurrent points forming diagonal line 

structures and refers to the percentage of consecutive recurring points, 

http://www.maths.lth.se/matstat/wafo
http://biosig.sf.net/
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3) laminarity (LAM) scores for a fraction of recurrent points forming vertical line 

structures, 

4) entropy (ENT) is defined as the Shannon information entropy of a histogram of 

diagonal line lengths, 

5) trapping time (TT) is the average length of the vertical lines, 

6) maxline (LMAX) is the length of the longest diagonal line excluding the main 

diagonal. 

RQA parameters were computed using the PyRQA Python package 

(https://pypi.python.org/pypi/PyRQA). Parameters of values for RQA were chosen as 

follows: m=6, time delay=1, radius=10, Theiler corrector=1, distance nom= 

Euclidean. 

The frequency characteristics of the VAG signal were examined by a short-time 

Fourier transform analysis. The short-time spectra were obtained by computing the 

discrete Fourier transform of segments, 150 samples each, Hanning window, and 

100 samples overlap of each segment. The spectral activity was analyzed by 

summing spectral power of the VAG signal in two bands: 50–250 Hz (P1) and 250–

450 Hz (P2) [9]. Two additional frequency parameters were derived by computing 

power spectral density at 470 Hz (F470) and 780 Hz (F780) from Fast Fourier 

Transform of the VAG signal. F470 and F780 were computed using the MATLAB 

spectrogram function. The extracted features dataset is available at 

http://doi.org/10.17632/kbt7v3szbj.1. 

 

2.4. Feature selection and classification algorithms 

Two types of group classification were performed: 1) 2-class classification 

Normal/Abnormal, where an abnormal group was formed by grouping CMPI, CMPII, 

https://pypi.python.org/pypi/PyRQA
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CMPIII and OA signals, 2) 5-class classification: Controls, CMPI, CMPII, CMPIII and 

OA. Feature selection and classification tasks were implemented in Weka open-

source software [21]. 

The genetic search algorithm was chosen to select the most relevant features 

for classification into 3 classifiers: MultilayerPerceptron, SMO and RandomForest 

(except SimpleLogistic, which has its own automatic attribute selection based on 

simple regression functions). Weka's GeneticSearch implements the simple genetic 

algorithm described by Goldberg (1989) [22]. This algorithm propagates the best 

population member to the next generation. The subset evaluator is based on 

considering the individual predictive ability of each feature along with the degree of 

redundancy between them [23]. 

 

 
 
Fig. 2. Block diagram of the classification of the VAG signals. The abbreviations used 

are defined in Section 2. 

 

For the classification of VAG signals, we used classifiers representing distinct types 

of algorithms. Four different algorithms were used for classification of selected 

features: logistic regression with automatic attribute selection (SimpleLogistic in 

Weka), multilayer perceptron with sigmoid activation function (MultilayerPerceptron in 

Weka), John Platt's sequential minimal optimization algorithm implementation of 
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support vector machine classifier (SMO in Weka) and random forest tree 

(RandomForest in Weka). We used default classifier parameters for algorithms in 

Weka without fine tuning the hyperparameters of the model to minimize the chance of 

overfitting [24]. The training process of classification algorithms in both 2-class and 5-

class classifications was conducted using the 10-fold cross-validation method 

described in 2.5. 

The block diagram of the classification of the VAG signals is shown in Figure 2. 

 

2.5. Classification performance evaluation 

The generalization error of classification algorithms was evaluated by stratified 10-

fold cross-validation. In this method, one randomly splits the training dataset into 10 

folds without replacement, where 9 folds are used for the model training and 1 fold is 

used for testing. This procedure is repeated 10 times so that we obtain 10 models 

and performance estimates. The class proportions are preserved in each fold to 

ensure that each fold is representative of the class proportions in the training dataset. 

The test results are averaged to estimate the classifier’s performance [25]. 

The performance of classifiers was measured by accuracy, specificity, 

sensitivity and area under the ROC curve (AUC). According to the confusion matrix 

for 2 classes, task overall accuracy is defined as ACC=(TP+TN)/(TP+FP+FN+TN), 

specificity SPEC=TN/(FP+TN) and sensitivity SENS=TP/(TP+FN), where: TP = true 

positive value, TN = true negative value, FP = false positive value, and FN = false 

negative value. AUC is defined as the area under the ROC curve which is created by 

plotting the sensitivity against 1−specificity at various threshold settings. For 5 

classes the weighted average metrics were computed, where each target class is 

weighted according to its prevalence. 
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3. Results 

In this section we describe the results of VAG signal parameterization and selection 

of the most relevant discriminate parameters and models using software and 

algorithms which are described in detail in the previous section. 

2-class classification 

Figure 3 show box plots of all extracted features from normal and abnormal VAG 

signals. Hotelling's t-squared statistic revealed statistically significant differences 

between these two groups for VAG measures (p<0.00001). Subsequent t-tests 

showed statistically significant differences (p<0.00001) of all parameters except the 

SHE (p=0.62120).  

 

 

 

Fig. 3 - Box plots of 16 extracted features of normal – abnormal signals. The 

horizontal line within the box indicates median, plus marks indicate mean, box 

boundaries indicate 25th and 75th percentiles, whiskers indicate standard deviations. 
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A more detailed analysis shows that abnormal signals show higher values of time 

domain (VMS and R4) and frequency domain (F470, F780, P1 and P2) parameters, 

lower values of FF, TC, DFA and MSE parameters (complexity features) and lower 

values of the RQA parameters (RR, DET, LAM, ENT, TT, LMAX). Due to the 

relatively large amount of data, the exact quantitative values of the VAG signal 

parameters are shown in Appendix B.  

Results of feature selection by the SimpleLogistic regression algorithm and genetic 

search are presented in Table 2. The SimpleLogistic regression algorithm chooses 

five features, which might be most relevant to build an effective 2-class classification 

model (F470, RR, S29, FF, SHE). In turn, using genetic search the F470, F780, P1, 

P2, RR, DET, LMAX, S14, S30 and FF parameters were selected as the most 

significant features.  

 

TABLE 2. Feature selection and classification results for 2 classes task (in percents). 

Feature 
selection 
algorithm 

Selected 
features 

Classification 
model 

ACC SEN SPE AUC 

 
SimpleLogistic 

regression 
 

F470, RR, S29, 
FF, SHE 

SimpleLogistic 90.4 93.4 84.8 95.6 

Genetic search 

F470, F780, 
P1, P2,  

RR, DET, 
LMAX,  S14, 

S30, FF 

 
MultilayerPerceptron 

 
88.8 91.7 83.3 94.6 

 
RandomForest 

 
87.2 90.1 81.8 93.6 

 
SMO 

 
84.5 89.3 75.8 91.9 

ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the ROC curve 
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The extracted parameters are given as inputs to classifiers, the results of which for 

each analyzed model are presented in Table 2. All the values of the quality metrics of 

classification exceed 80%, for the best classification algorithm of SimpleLogistic at 

the level of 90% and 95% for accuracy and AUC, respectively, and 93% and 85% for 

sensitivity and specificity, respectively. 

 
3.1. 5-class classification 

Distribution of results for 5 classes is similar to the 2 classes with additional trends 

arising from the existence of multiple classes (Figure 4). Here we have a similar 

relationship to the case of 2 classes: with 4 classes abnormal signals have higher 

values of time domain and frequency domain parameters, lower values of all 

complexity parameters and lower all nonlinear parameters of RQA.  

 

Fig. 4 - Box plots of 16 extracted features of VAG signals for 5 classes (for MSE see 

Figure 5). The horizontal line within the box indicates median, plus marks indicate 

mean, box boundaries indicate 25th and 75th percentiles, whiskers indicate standard 

deviations. 
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Moreover, there can be observed an increase of power at high frequencies (F470, 

F780, P1, P2), mean amplitude of the signal (VMS) and the number of high amplitude 

values (R4) with the severity of joint disorder (from CMPI to OA). In contrast, the 

complexity of pathological VAG signals is lower than normal signals; DFA, FF and TC 

values decrease in the order CON, CMPI, CMPII, CMPIII, OA.  

Statistical analysis of multivariate analysis of variance (MANOVA) shows main 

effects statistically significant in all analyzed parameters (p<0.00001). The detailed 

analysis of variance (ANOVA) shows, however, lack of significance in many 

parameters, particularly in comparisons of CON-CMPI and CMPIII-OA. Detailed 

results of the analysis of variance are presented in Appendix 2. All statistics were 

performed using Statistica v.13.1 (StatSoft, Inc., OK, USA).  

 

Fig. 5 - Multiscale entropy curves (mean ± standard error) of VAG signals. 
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Results of feature selection by the SimpleLogistic regression algorithm showed that 

to build the 5-class classification model the most relevant are frequency domain 

(F470, F780, P1, P2), time domain (VMS and R4), nonlinearity (RR, DET, TT, LAM) 

and complexity (FF, DFA, TC, S7, S8, S29, S30) parameters. In turn, genetic search 

chooses the following parameters, which showed the highest relevance: F470, F780, 

P1, P2, VMS R4, RR, S14, FF (Table 3).  

 

TABLE 3. Feature selection and classification results for 5 classes task (in percents) 

Feature 
selection 
algorithm 

Selected 
features 

Classification 
model 

ACC SEN SPE AUC 

 
SimpleLogistic 

regression 
 

 
F470, F780, 

VMS, P1, P2, 
R4, RR, DET, 
TT, FF, LAM, 
DFA, TC, S7, 
S8, S29, S30 

SimpleLogistic 69.0 91.4 69.0 90.0 

Genetic search 

F470, F780, 
P1, P2, 

VMS, R4, 
RR, S14, FF 

 
MultilayerPerceptron 

 
69.0 91.2 69.0 90.2 

 
RandomForest 

 
62.0 89.7 62.0 89.7 

 
SMO 

 
61.5 89.0 61.5 89.6 

ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the ROC curve 

 
 

Similarly to the 2-class classification, for the 5-class classification, the accuracy, 

AUC, sensitivity and specificity are computed to compare the performance of the 

classifier (Table 3). The best results were obtained for the SimpleLogistic and 

MultilayerPerceptron algorithms. These models reached an accuracy rate of 69% and 

AUC of 90%, with the sensitivity and specificity at the level of 91% and 69% 

respectively, in both models. 
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4. Discussion 

Results presented in this paper confirm the high usefulness of the quantitative 

analysis of VAG signals based on classification techniques for normal and 

pathological knees [4-6,26]. We obtained over 90% levels of accuracy and AUC 

metrics, more than 93% sensitivity and more than 84% specificity for the logistic 

regression-based method (SimpleLogistic). These values are slightly lower than 

those we can find in the published research works, where the values obtained for 

accuracy, sensitivity and specificity are in the range of 94-100% [4,6,7,11,12]. The 

slightly worse results we obtained in this work can be partly explained by the 

inclusion in the abnormal group of participants with PFJ disorders only, whereas in 

other studies a much wider range of pathologies was analyzed, often only very 

broadly defined [10,16,23,27,28]. Our findings could also have been influenced by 

the fact that knees with CMPI are characterized by slight lesions in the articular 

cartilage, noticeable only in MRI imaging [29,30]. VAG waveforms from these 

patients are only slightly different from the VAG signals of healthy individuals, and 

some of them could be interpreted as 'normal'. 

However, it should be mentioned that the 2-class classification, despite high 

rates of accuracy, sensitivity and specificity, is characterized by limited clinical 

application and can only support screening tests [26]. Therefore, in this study we 

extended the classification limited to normal and abnormal VAG signals by classifying 

signals of 4 various knee joint disorders and its stages. For the 5-class classification 

(control knees added), again using the SimpleLogistic and MultilayerPerceptron 

models, we obtained values of accuracy and AUC of 69% and 90% respectively, and 

sensitivity and specificity over 91% and 69%. These values are significantly lower 

than the corresponding values obtained for the normal-abnormal classification, but 
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surprisingly well reflect the level of dysfunctions in the knee and correspond with their 

progress and biomechanical and morphological background. It seems that once 

again it can be explained by the minor differences in the level of degradation of the 

cartilage between the two groups. One can see the similarity of the characteristics of 

the signals CON vs CMPI and CMPIII vs OA, which entails difficulty in a classification 

of these cases using machine learning. However, it should be noted that in medical 

diagnosis using typical methods of research (imaging studies and physical 

examination), the distinction between pathologies also encountered some difficulties, 

and it is often not clear [29-31]. This is due to the fact, that in CMPI only slight 

swelling, softening and roughness of cartilage are observed [2]. Therefore, it seems, 

that in CMPI some impairment of cartilage integrity occurred, however, without a 

substantial effect on the articular function analyzed by VAG method. In turn, CMPIII is 

associated with the loss of more than 50% of patellar cartilage thickness, which 

brings it closer to the OA, where also is observed the loss of the articular cartilage, 

but with bone exposure and the narrowing of the joint space [2]. Taken together, the 

results of our study show that there is an increase of power at high frequencies 

(F470, F780, P1, P2), mean amplitude of the signal (VMS) and the number of high 

amplitude values (R4) with the severity of joint disorder (from CMPI to OA). As 

previously suggested, this phenomenon may be associated with progress of 

degenerative changes within chondral structures and declining lubrication of articular 

surfaces, leading to limited possibilities of reducing friction [2]. 

On the other hand, the complexity of pathological VAG signals is lower than 

signals of normal joints. DFA, FF and TC values decrease in the order CON, CMPI, 

CMPII, CMPIII, OA, which corresponds to a progressive disorder, ranging from 

healthy joints to the most severe changes in the form of knee OA. It is also noted that 
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the degree of chondral pathology corresponds to the regularity of the signal (MSE), 

which may, however, result from the characteristics of the algorithm for calculating 

multiscale sample entropy. Namely, the MSE algorithm is sensitive to outliers of the 

signal [18]. In pathological signals, we can observe a larger number of high-amplitude 

vibrations, and this may affect MSE. Thus this parameter should be interpreted in the 

context not of the signal regularity but the incidence of extreme vibrations. 

The selected parameters in the selection process of a classification algorithm 

indicate the complex, nonlinear nature of VAG signals. Nonlinear characteristics of 

VAG signals indicate a greater contribution of stochastic components to the 

pathological signal (RR), a smaller contribution of deterministic components (DET), a 

smaller number of similar states in which vibrations remain in time (intermittency) 

(LAM) and less time in which these states occur (TT) [6,19]. 

Of particular interest is the fact that we obtained the best accuracy for the 

SimpleLogistic algorithm [32]. Logistic regression is a very widely used method of 

analysis for classification problems. This is due to the fact that this method offers a 

relatively clear interpretation of the results. The logistic function has useful properties: 

it describes the probability of developing the degree of the pathology and has a 

property of threshold function that is particularly useful in medical and 

epidemiological studies. The SimpleLogistic algorithm used in this study is a modified 

and improved version of the logistic regression containing the automatic selection of 

the best parameters for classification. However, when considering only the 5-class 

classification the MultilayerPerceptron algorithm based on features chosen by genetic 

search ensures similar performance of the classification. It therefore seems that for 

multiclass classification of the VAG signals the most relevant of the parameters 

described above are frequency domain (F470, F780, P1 and P2), time domain (VMS, 
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R4), nonlinear (RR) and complexity (FF) features. This finding may be relevant to the 

final application of analysis of VAG signals for clinical use. 

Limitations of the current study are the relatively small sample sizes per group 

and unequal sex distribution. However, it should be emphasized that these 

proportions are in agreement with the observed incidence rate of knee lesions. 

Another limitation is the fact that the inclusion criteria for the control group were an 

interview and functional testing, indicating the absence of any disturbances in the 

knee joints, which, however, was not confirmed by MRI procedures. Therefore we 

cannot exclude that the knees of control subjects possess minor asymptomatic 

cartilage changes which could also affect our results. 

 

5. Conclusion 

In conclusion, we found that the VAG method seems to be sensitive enough for 

evaluating the biomechanical and morphological changes within the knee joint 

environment. Analysis and the 5-class classification of the VAG signals give 

satisfactory results not only for the screening tests but also for classifying signals of 

various knee joint disorders and their stages, according to the level of chondral lesion 

[33,34]. Thus, the VAG method may constitute a helpful tool for clinicians and may be 

implemented as a computer-aided decision support system. In the latter case, further 

studies are needed that focus on the development of methods for signal analysis in 

classification of a wide range of VAG signals, also from the other joints. It seems 

important to focus on all aspects of this method: measurement tools, methods of 

analysis and selection of classification algorithms, but also simplify the whole 

assessment procedure [5,6,35-36]. 

 



Manuscript accepted for publication in Computer Methods and Programs in Biomedicine 

 

23 
 

Acknowledgments  
 

We would like to thank all of the subjects who participated in the study. 

 

The project was approved by the Ethics Committee of Opole Voivodship. Signed 

informed consent was obtained from all tested persons. 

The authors declare no conflict of interest. 

The authors report no external funding source for this study. 
 

REFERENCES 

[1] D. Bączkowicz, K. Falkowski, E. Majorczyk, Assessment of Relationships 

Between Joint Motion Quality and Postural Control in Patients With Chronic 

Ankle Joint Instability, J. Orthop. Sport. Phys. Ther. 47 (2017) 570–577, 

doi:10.2519/jospt.2017.6836.  

[2] D. Bączkowicz, E. Majorczyk, Joint Motion Quality in Chondromalacia 

Progression Assessed by Vibroacoustic Signal Analysis, Pm&r. 8 (2016) 1065–

1071, doi:10.1016/j.pmrj.2016.03.012. 

[3] D. Bączkowicz, E. Majorczyk, K. Kręcisz, Age-Related Impairment of Quality of 

Joint Motion in Vibroarthrographic Signal Analysis, Biomed Res. Int. 2015 

(2015) 1–7, doi:10.1155/2015/591707. 

[4] K. Kim, J. Seo, C. Song. Classification of normal and abnormal knee joint using 

back-propagation neural network, Proc. 2008 Int. Conf. Bioinforma. Comput. 

Biol. BIOCOMP. 2008 (2008) 483–488. 

[5] Y. Wu, Knee Joint Vibroarthrographic Signal Processing and Analysis, 

SpringerBriefs in Bioengineering. (2015), doi:10.1007/978-3-662-44284-5. 



Manuscript accepted for publication in Computer Methods and Programs in Biomedicine 

 

24 
 

[6] S. Nalband, A. Sundar, A.A. Prince, A. Agarwal, Feature selection and 

classification methodology for the detection of knee-joint disorders, Comput. 

Methods Programs Biomed. 127 (2016) 94–104, 

doi:10.1016/j.cmpb.2016.01.020. 

[7] R.M. Rangayyan, F. Oloumi, Y. Wu, S. Cai, Fractal analysis of knee-joint 

vibroarthrographic signals via power spectral analysis, Biomed. Signal Process. 

Control. 8 (2013) 23–29, doi:10.1016/j.bspc.2012.05.004. 

[8] G. McCoy, J. McCrea, D. Beverland, W. Kernohan, R. Mollan, Vibration 

arthrography as a diagnostic aid in diseases of the knee. A preliminary report, J 

Bone Jt. Surg Br. 69-B (2) (1987) 288-293, doi:10.1016/0268-0033(87)90023-4. 

[9] D. Bączkowicz, E. Majorczyk, Joint motion quality in vibroacoustic signal 

analysis for patients with patellofemoral joint disorders, BMC Musculoskelet. 

Disord. 15 (2014), doi:10.1186/1471-2474-15-426. 

[10] Y. Wu, P. Chen, X. Luo, H. Huang, L. Liao, Y. Yao, et al., Quantification of knee 

vibroarthrographic signal irregularity associated with patellofemoral joint 

cartilage pathology based on entropy and envelope amplitude measures, 

Comput. Methods Programs Biomed. 130 (2016) 1–12. 

doi:10.1016/j.cmpb.2016.03.021. 

[11] E. Petre, D. Selişteanu, D. Şendrescu, C. Ionete, Neural networks-based 

adaptive control for a class of nonlinear bioprocesses, Neural Computing and 

Applications. 19 (2009) 169–178. doi:10.1007/s00521-009-0284-9. 

[12] J. Li and S. M. R. Hasan, Design and Performance Analysis of a 866-MHz Low-

Power Optimized CMOS LNA for UHF RFID, IEEE Trans Ind Electron. 60 

(2013) 1840-1849. doi: 10.1109/TIE.2012. 



Manuscript accepted for publication in Computer Methods and Programs in Biomedicine 

 

25 
 

[13] R.-E. Precup, R.-C. David, E.M. Petriu, S. Preitl, M.-B. Rădac, Novel Adaptive 

Charged System Search algorithm for optimal tuning of fuzzy controllers, Expert 

Syst Appl. 41 (2014) 1168–1175. doi:10.1016/j.eswa.2013.07.110. 

[14] S. B. Ghosn, F. Drouby, H. M. Harmanani, A parallel genetic algorithm for the 

open-shop scheduling problem using deterministic and random moves, Int J 

Artif Intell. 14 (2016),  130-144. DOI: 10.1145/1639809.1639841. 

[15] R.M. Rangayyan, Y. Wu, Analysis of Vibroarthrographic Signals with Features 

Related to Signal Variability and Radial-Basis Functions, Ann. Biomed. Eng. 37 

(2009) 156–163. doi:10.1007/s10439-008-9601-1. 

[16] R.M. Rangayyan, Y.F. Wu, Screening of knee-joint vibroarthrographic signals 

using statistical parameters and radial basis functions, Med. Biol. Eng. Comput. 

46 (2008) 223–232. doi:10.1007/s11517-007-0278-7. 

[17] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, 

Mosaic organization of DNA nucleotides, Phys. Rev. E 49 (1994) 1685–1689. 

doi:10.1103/physreve.49.1685. 

[18] M. Costa, A.L. Goldberger, C.-K. Peng, Multiscale entropy analysis of biological 

signals, Phys. Rev. E 71 (2005). doi:10.1103/physreve.71.021906. 

[19] N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence-

plot-based measures of complexity and their application to heart-rate-variability 

data, Phys. Rev. E 66 (2002). doi:10.1103/physreve.66.026702. 

[20] C.L. Webber, J.P. Zbilut. Dynamical assessment of physiological systems and 

states using recurrence plot strategies, J. Appl. Physiol. 76 (1994) 965–973. 

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The 

WEKA data mining software, ACM SIGKDD Explorations Newsletter. 11 (2009) 

10. doi:10.1145/1656274.1656278. 



Manuscript accepted for publication in Computer Methods and Programs in Biomedicine 

 

26 
 

[22] D.E. Goldberg, Genetic algorithms in search, optimization, and machine 

learning, Addison-Wesley Longman Publishing Co., Inc., 1989. 

[23] M. Hall, Correlation-based Feature Selection for Machine Learning, PhD 

dissertation, Department of Computer Science, University of Waikato, 1999. 

[24] P. Domingos, A few useful things to know about machine learning, Commun. 

ACM 55 (2012) 78. doi:10.1145/2347736.2347755. 

[25] R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation 

and Model Selection, Proceedings of IJCAI. 14 (1995) 1137-1145.  

[26] R.M. Rangayyan, Y. Wu, Screening of knee-joint vibroarthrographic signals 

using probability density functions estimated with Parzen windows, Biomed. 

Signal Process. Control 5 (2010) 53–58. doi:10.1016/j.bspc.2009.03.008. 

[27] D. Moreira, J. Silva, M. Correia, M. Massada, Classification of knee arthropathy 

with accelerometer-based vibroarthrography. Stud Health Technol Inform. 224 

(2016) 33-9. doi: 10.3233/978-1-61499-653-8-33. 

[28] C.-S. Shieh, C.-D. Tseng, L.-Y. Chang, W.-C. Lin, L.-F. Wu, H.-Y. Wang, P.-J. 

Chao, C.-L. Chiu, T.-F. Lee, Synthesis of vibroarthrographic signals in knee 

osteoarthritis diagnosis training, BMC Res Notes. 9 (2016). 

doi:10.1186/s13104-016-2156-6.  

[29] H.K. Pihlajamäki, P.-I. Kuikka, V.-V. Leppänen, M.J. Kiuru, V.M. Mattila, 

Reliability of Clinical Findings and Magnetic Resonance Imaging for the 

Diagnosis of Chondromalacia Patellae, J Bone Jt. Surg Am. 92 (2010) 927–934. 

doi:10.2106/jbjs.h.01527. 

[30] M. Samim, E. Smitaman, D. Lawrence, H. Moukaddam, MRI of anterior knee 

pain. Skeletal Radiol. 43 (2014) 875–893. doi:10.1007/s00256-014-1816-7. 



Manuscript accepted for publication in Computer Methods and Programs in Biomedicine 

 

27 
 

[31] N. Tanaka, M. Hoshiyama, Vibroarthrography in patients with knee arthropathy, 

J Back Musculoskelet Rehabil. 25 (2012) 117–122. doi:10.3233/bmr-2012-

0319. 

[32] N. Landwehr, M. Hall, E. Frank, Logistic Model Trees, Mach Learn. 59 (2005) 

161–205. doi:10.1007/s10994-005-0466-3.  

[33] T. Mu, A.K. Nandi, R.M. Rangayyan, Screening of knee-joint vibroarthrographic 

signals using the strict 2-surface proximal classifier and genetic algorithm, 

Comput. Biol. Med. 38 (2008) 1103–1111. 

doi:10.1016/j.compbiomed.2008.08.009. 

[34] Z.M.K. Maussavi, R.M. Rangayyan, G.D. Bell, C.B. Frank, K.O. Ladly, 

Screening of vibroarthrographic signals via adaptive segmentation and linear 

prediction modeling, IEEE Trans. Biomed. Eng. 43 (1996) 15. 

doi:10.1109/10.477697. 

[35] S. Cai, S. Yang, F. Zheng, M. Lu, Y. Wu, S. Krishnan, Knee Joint Vibration 

Signal Analysis with Matching Pursuit Decomposition and Dynamic Weighted 

Classifier Fusion, Comput. Math. Methods Med. 2013 (2013) 1–11. 

doi:10.1155/2013/904267. 

[36] Y. Wu, S. Krishnan, Combining least-squares support vector machines for 

classification of biomedical signals: a case study with knee-joint 

vibroarthrographic signals, J. Exp. Theor. Artif. Intell. 23 (2011) 63–77. 

doi:10.1080/0952813x.2010.506288. 

  



Manuscript accepted for publication in Computer Methods and Programs in Biomedicine 

 

28 
 

Appendix A 

Effects of selecting a learning algorithm based on Bayesian optimization methods 

and random search over its hyperparameters - Auto-WEKA package [1]. 

Auto-WEKA result for 2-class classification: 

------- 5 BEST CONFIGURATIONS ------- 

Configuration #1: 

Scheme: weka.classifiers.meta.Bagging -P 58 -S 1 -num-slots 1 -I 13 -W 

weka.classifiers.functions.MultilayerPerceptron -- -L 0.8537172390233696 -M 

0.6032267313055338 -N 500 -V 0 -S 1 -E 20 -H t -B -C –R 

Configuration #2: 

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.7124792551054612 -M 

0.19142401626579603 -N 500 -V 0 -S 1 -E 20 -H i 

Configuration #3: 

Scheme: weka.classifiers.meta.AttributeSelectedClassifier -E 

"weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S 

"weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N -1 -num-slots 1" 

-W weka.classifiers.functions.SGD -- -F 1 -L 0.006829365910517769 -R 

2.0894080667955306E-11 -E 500 -C 0.001 -S 1 

Configuration #4: 

Scheme: weka.classifiers.functions.SimpleLogistic -I 0 -M 500 -H 50 -W 0.0 

Configuration #5: 

Scheme:  weka.classifiers.meta.AttributeSelectedClassifier -E 

"weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S 

"weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N -1 -num-slots 1" 

-W weka.classifiers.functions.SMO -- -C 1.1258189038152562 -L 0.001 -P 1.0E-12 -N 0 -V -

1 -W 1 -K "weka.classifiers.functions.supportVector.Puk -O 0.30763920387688776 -S 

6.850211869028438 -C 250007" 
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TABLE 1. Auto-WEKA classification results for 2 classes task (in percents). 
 

Classifier Accuracy Sensitivity Specificity AUC 

Configuration #1 87.7 90.9 81.8 96.0 

Configuration #2 87.7 90.9 81.8 92.8 

Configuration #3 82.9 86.8 75.8 92.9 

Configuration #4 89.8 91.7 86.4 96.2 

Configuration #5 85.0 92.6 71.2 81.9 

 

Auto-WEKA result for 5-class classification: 

------- 5 BEST CONFIGURATIONS ------- 

Configuration #1: 

Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.39398546524785105 -M 

0.3728386586322857 -N 500 -V 0 -S 1 -E 20 -H i 

Configuration #2: 

Scheme: weka.classifiers.trees.LMT -I -1 -M 15 -W 0.0 

Configuration #3: 

Scheme: weka.classifiers.meta.AdaBoostM1 -P 86 -S 1 -I 2 -W 

weka.classifiers.functions.MultilayerPerceptron -- -L 0.9527983201131888 -M 

0.11434412042979779 -N 500 -V 0 -S 1 -E 20 -H o 

Configuration #4: 

Scheme: weka.classifiers.meta.AttributeSelectedClassifier -E 

"weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S 

"weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N -1 -num-slots 1" 

-W weka.classifiers.meta.RandomSubSpace -- -P 0.7664967488071254 -S 1 -num-slots 1 -I 

2 -W weka.classifiers.trees.LMT -- -I -1 -M 1 -W 0.0 

Configuration #5: 

Scheme:  weka.classifiers.meta.Vote -S 1 -B 

"weka.classifiers.meta.AttributeSelectedClassifier -E \"weka.attributeSelection.CfsSubsetEval 
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-P 1 -E 1\" -S \"weka.attributeSelection.BestFirst -D 1 -N 5\" -W 

weka.classifiers.functions.MultilayerPerceptron -- -L 0.3 -M 0.4517117729945054 -N 500 -V 

0 -S 1 -E 20 -H a" -B "weka.classifiers.meta.AttributeSelectedClassifier -E 

\"weka.attributeSelection.CfsSubsetEval -P 1 -E 1\" -S \"weka.attributeSelection.BestFirst -D 

1 -N 5\" -W weka.classifiers.trees.RandomTree -- -K 2 -M 40.0 -V 0.001 -S 1 -depth 9 -N 4" -

B "weka.classifiers.meta.AttributeSelectedClassifier -E 

\"weka.attributeSelection.CfsSubsetEval -P 1 -E 1\" -S \"weka.attributeSelection.BestFirst -D 

1 -N 7\" -W weka.classifiers.trees.J48 -- -C 0.7186004 -M 56" -B 

"weka.classifiers.meta.AttributeSelectedClassifier -E \"weka.attributeSelection.CfsSubsetEval 

-P 1 -E 1\" -S \"weka.attributeSelection.BestFirst -D 1 -N 7\" -W 

weka.classifiers.functions.MultilayerPerceptron -- -L 0.9589876515699867 -M 

0.4298494794278802 -N 500 -V 1 -S 1 -E 20 -H o" -R 

AVG"weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N -1 -num-

slots 1" -W weka.classifiers.functions.SMO -- -C 1.1258189038152562 -L 0.001 -P 1.0E-12 -

N 0 -V -1 -W 1 -K "weka.classifiers.functions.supportVector.Puk -O 0.30763920387688776 -

S 6.850211869028438 -C 250007" 
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TABLE 2. Auto-WEKA classification results for 5 classes task (in percents). 
 

Classifier Accuracy Sensitivity Specificity AUC 

Configuration #1 67.9 91.9 67.9 91.2 

Configuration #2 69.0 91.4 69.0 90.0 

Configuration #3 66.8 92.4 66.8 84.7 

Configuration #4 60.4 88.0 60.4 87.5 

Configuration #5 63.1 86.8 63.1 89.1 

 

 

[1] C. Thornton, F. Hutter, H.H. Hoos, K. Leyton-Brown, Auto-WEKA: Combined 

Selection and Hyperparameter Optimization of Classification Algorithms.  
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Appendix B 

Descriptives 

 

Mean Median Std. dev. Mean Median Std. dev. Mean Median Std. dev. Mean Median Std. dev. Mean Median Std. dev. Mean Median Std. dev. Mean Median Std. dev.

F470 -2.720 -2.821 0.657 -1.498 -1.395 0.725 -2.720 -2.821 0.657 -2.349 -2.406 0.402 -1.690 -1.625 0.433 -1.005 -1.056 0.496 -1.038 -1.057 0.593

F780 -3.260 -3.373 0.752 -2.297 -2.261 0.761 -3.260 -3.373 0.752 -3.014 -2.997 0.618 -2.442 -2.325 0.531 -1.959 -2.074 0.584 -1.819 -1.746 0.739

DFA 0.539 0.542 0.088 0.462 0.465 0.067 0.539 0.542 0.088 0.501 0.514 0.051 0.476 0.476 0.066 0.426 0.423 0.061 0.454 0.458 0.068

VMS 0.011 0.000 0.059 0.348 0.045 0.749 0.011 0.000 0.059 0.016 0.001 0.075 0.200 0.009 0.854 0.357 0.137 0.398 0.869 0.489 1.076

R4 1.803 1.293 1.601 5.786 5.534 3.493 1.803 1.293 1.601 2.121 1.795 1.754 4.130 3.330 2.303 7.664 8.031 2.561 9.106 9.184 2.167

P1 2.109 1.042 3.873 28.972 17.750 34.275 2.109 1.042 3.873 3.272 2.291 3.962 15.985 8.348 30.107 37.533 34.832 18.790 60.281 54.605 44.340

P2 0.290 0.102 0.537 6.731 4.148 8.754 0.290 0.102 0.537 0.527 0.390 0.816 2.737 2.081 2.898 11.919 9.238 11.327 10.990 9.880 7.546

RR 0.066 0.056 0.043 0.019 0.015 0.014 0.066 0.056 0.043 0.034 0.034 0.013 0.018 0.015 0.012 0.010 0.009 0.006 0.018 0.015 0.013

DET 0.982 0.984 0.011 0.970 0.974 0.016 0.982 0.984 0.011 0.977 0.980 0.009 0.971 0.973 0.012 0.965 0.969 0.018 0.966 0.975 0.022

ENT 2.726 2.725 0.246 2.533 2.541 0.231 2.726 2.725 0.246 2.628 2.632 0.185 2.545 2.541 0.207 2.483 2.470 0.242 2.485 2.534 0.265

LMAX 3897.667 3644.500 1737.771 2466.702 2355.000 1103.619 3897.667 3644.500 1737.771 3052.250 2864.500 1051.594 2550.323 2355.000 1065.823 2145.889 1899.500 1027.223 2180.615 2065.000 1088.813

LAM 0.981 0.986 0.018 0.952 0.967 0.040 0.981 0.986 0.018 0.971 0.975 0.018 0.956 0.964 0.028 0.940 0.949 0.043 0.943 0.968 0.055

TT 8.572 8.218 2.439 6.891 6.638 1.786 8.572 8.218 2.439 7.619 7.375 1.661 6.970 6.608 1.705 6.508 6.239 1.801 6.544 6.412 1.836

MSE 20.830 20.216 7.849 11.743 10.360 6.259 20.830 20.216 7.849 17.512 16.710 6.722 12.856 11.683 5.313 9.326 8.987 3.328 7.550 5.705 4.933

S7 0.627 0.612 0.237 0.380 0.343 0.198 0.627 0.612 0.237 0.556 0.525 0.225 0.412 0.372 0.165 0.307 0.304 0.104 0.252 0.191 0.155

S8 0.657 0.639 0.247 0.395 0.354 0.207 0.657 0.639 0.247 0.582 0.552 0.233 0.429 0.378 0.174 0.318 0.315 0.109 0.261 0.201 0.161

S9 0.681 0.659 0.254 0.408 0.365 0.213 0.681 0.659 0.254 0.600 0.565 0.238 0.444 0.395 0.180 0.328 0.328 0.113 0.269 0.210 0.167

S10 0.701 0.675 0.261 0.417 0.377 0.218 0.701 0.675 0.261 0.615 0.576 0.240 0.455 0.412 0.186 0.335 0.330 0.117 0.274 0.214 0.171

S11 0.719 0.683 0.267 0.424 0.384 0.223 0.719 0.683 0.267 0.627 0.592 0.243 0.464 0.418 0.190 0.339 0.342 0.119 0.277 0.218 0.174

S12 0.735 0.699 0.274 0.430 0.379 0.227 0.735 0.699 0.274 0.638 0.599 0.246 0.469 0.424 0.194 0.343 0.342 0.121 0.280 0.221 0.175

S13 0.747 0.710 0.278 0.435 0.384 0.230 0.747 0.710 0.278 0.645 0.605 0.247 0.476 0.423 0.200 0.346 0.343 0.123 0.282 0.220 0.179

S14 0.760 0.726 0.282 0.438 0.396 0.233 0.760 0.726 0.282 0.653 0.617 0.248 0.478 0.427 0.200 0.348 0.340 0.128 0.283 0.214 0.184

S15 0.769 0.735 0.288 0.440 0.393 0.234 0.769 0.735 0.288 0.655 0.620 0.248 0.484 0.430 0.203 0.347 0.340 0.125 0.285 0.210 0.184

S16 0.776 0.748 0.291 0.440 0.390 0.234 0.776 0.748 0.291 0.657 0.628 0.247 0.481 0.433 0.200 0.347 0.330 0.128 0.285 0.211 0.186

S17 0.784 0.748 0.296 0.441 0.390 0.238 0.784 0.748 0.296 0.660 0.633 0.247 0.485 0.442 0.208 0.344 0.329 0.126 0.284 0.214 0.189

S18 0.790 0.749 0.298 0.441 0.379 0.238 0.790 0.749 0.298 0.664 0.641 0.250 0.480 0.431 0.201 0.346 0.321 0.129 0.284 0.212 0.187

S19 0.795 0.758 0.302 0.439 0.382 0.238 0.795 0.758 0.302 0.660 0.630 0.247 0.481 0.445 0.208 0.344 0.315 0.129 0.281 0.209 0.188

S20 0.796 0.764 0.303 0.436 0.380 0.237 0.796 0.764 0.303 0.659 0.637 0.247 0.477 0.450 0.204 0.342 0.314 0.128 0.280 0.213 0.190

S21 0.800 0.776 0.304 0.435 0.380 0.239 0.800 0.776 0.304 0.656 0.639 0.250 0.476 0.434 0.206 0.341 0.317 0.131 0.278 0.202 0.191

S22 0.801 0.768 0.308 0.432 0.379 0.238 0.801 0.768 0.308 0.650 0.633 0.250 0.476 0.446 0.207 0.337 0.312 0.128 0.273 0.209 0.189

S23 0.802 0.769 0.308 0.429 0.377 0.237 0.802 0.769 0.308 0.647 0.637 0.245 0.473 0.442 0.208 0.337 0.316 0.128 0.271 0.205 0.190

S24 0.801 0.770 0.309 0.423 0.365 0.236 0.801 0.770 0.309 0.641 0.626 0.249 0.468 0.448 0.204 0.328 0.309 0.125 0.263 0.200 0.181

S25 0.800 0.775 0.312 0.422 0.371 0.235 0.800 0.775 0.312 0.638 0.618 0.247 0.465 0.450 0.203 0.331 0.309 0.128 0.266 0.201 0.187

S26 0.796 0.778 0.310 0.416 0.370 0.236 0.796 0.778 0.310 0.632 0.615 0.248 0.461 0.446 0.206 0.322 0.298 0.126 0.261 0.185 0.189

S27 0.799 0.786 0.313 0.413 0.355 0.233 0.799 0.786 0.313 0.625 0.607 0.247 0.459 0.431 0.203 0.320 0.297 0.123 0.260 0.187 0.188

S28 0.795 0.779 0.312 0.407 0.356 0.230 0.795 0.779 0.312 0.618 0.593 0.248 0.448 0.401 0.200 0.318 0.293 0.116 0.254 0.192 0.183

S29 0.793 0.778 0.312 0.403 0.343 0.229 0.793 0.778 0.312 0.614 0.594 0.244 0.446 0.416 0.197 0.310 0.295 0.117 0.252 0.185 0.185

S30 0.788 0.768 0.313 0.400 0.339 0.228 0.788 0.768 0.313 0.607 0.583 0.244 0.443 0.398 0.197 0.310 0.276 0.121 0.249 0.182 0.181

FF 2.659 2.461 0.881 1.999 1.970 0.394 2.659 2.461 0.881 2.138 2.147 0.394 2.151 2.145 0.475 1.792 1.760 0.267 1.954 1.975 0.306

SHE 2.843 2.852 0.703 2.798 2.799 0.527 2.843 2.852 0.703 3.050 3.040 0.547 2.912 3.017 0.536 2.785 2.757 0.470 2.408 2.410 0.332

TC 3135.545 3038.000 1074.108 2762.810 2652.000 824.157 3135.545 3038.000 1074.108 3247.000 3143.000 966.812 2888.774 2892.000 612.061 2663.833 2592.000 599.695 2228.231 1960.000 839.183

CMPIII OA
Variable

Normal Abnormal Controls CMPI CMPII
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MANOVA ANOVA Post-hoc tests 

 

Test Value F Effect df Error df p Partial 

Eta-

squared

Intercept Wilks 0 782167.3 41.000 142 0 0.999996

Pillai 1 782166.9 41.000 142 0 0.999996

Hotelling 225837 782167.3 41.000 142 0 0.999996

Roy 225837 782167.3 41.000 142 0 0.999996

Group Wilks 0 4.4 164.000 568.8288 0 0.557681

Pillai 1.8 2.9 164.000 580 0 0.451066

Hotelling 8.7 7.5 164.000 562 0 0.68551

Roy 7.3 25.8 41.000 145 0 0.87937

Effect

Multivariate tests, effect sizes and powers (5_class)

Sigma-restricted parametrization

Df F470

SS

F470

MS

F470

F

F470

p

F780

SS

F780

MS

F780

F

F780

p

DFA

SS

DFA

MS

DFA

F

DFA

p

Intercept 1 518.6817 518.6817 1703.076 0 1045.009 1045.009 2343.247 0 38.43598 38.43598 7398.752 0

Group 4 99.4324 24.8581 81.621 0 64.707 16.177 36.273 0 0.35181 0.08795 16.93 0

Error 182 55.4292 0.3046 81.166 0.446 0.94548 0.00519

All 186 154.8616 145.873 1.29728

Effect

Df VMS

SS

VMS

MS

VMS

F

VMS

p

R4

SS

R4

MS

R4

F

R4

p

P1

SS

P1

MS

P1

F

P1

p

Intercept 1 14.14206 14.14206 45.34722 0 4125.471 4125.471 993.6423 0 95095.5 95095.52 192.0927 0

Group 4 15.70211 3.92553 12.58739 0 1551.9 387.975 93.4459 0 82664.3 20666.06 41.7454 0

Error 182 56.75883 0.31186 755.64 4.152 90099.1 495.05

All 186 72.46093 2307.54 172763.4

Effect

Df P2

SS

P2

MS

P2

F

P2

p

RR

SS

RR

MS

RR

F

RR

p

DET

SS

DET

MS

DET

F

DET

p

Intercept 1 4688.6 4688.595 137.571 0 0.143526 0.143526 196.5413 0 158.2748 158.2748 760501.5 0

Group 4 4783.9 1195.976 35.0919 0 0.102764 0.025691 35.1807 0 0.0091 0.0023 10.9 0

Error 182 6202.79 34.081 0.132907 0.00073 0.0379 0.0002

All 186 10986.7 0.235671 0.0469

Univariate tests (5_class)

Sigma-restricted parametrization

Effect
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Effect

Df ENTR

SS

ENTR

MS

ENTR

F

ENTR

p

LMAX

SS

LMAX

MS

LMAX

F

LMAX

p

LAM

SS

LAM

MS

LAM

F

LAM

p

Intercept 1 1108.415 1108.415 20275.55 0 1.28E+09 1.28E+09 712.8365 0 153.69 153.69 145525.2 0

Group 4 1.996 0.499 9.13 0.000001 1.03E+08 2.58E+07 14.3543 0 0.0548 0.0137 13 0

Error 182 9.95 0.055 3.27E+08 1.80E+06 0.1922 0.0011

All 186 11.946 4.30E+08 0.247

Effect

Df TT

SS

TT

MS

TT

F

TT

p

MSE

SS

MSE

MS

MSE

F

MSE

p

S7

SS

S7

MS

S7

F

S7

p

Intercept 1 8779.451 8779.451 2141.055 0 31025.27 31025.27 798.9813 0 31.08245 31.08245 829.8244 0

Group 4 144.041 36.01 8.782 0.000002 5164.11 1291.03 33.2473 0 4.13013 1.03253 27.566 0

Error 182 746.296 4.101 7067.25 38.83 6.81711 0.03746

All 186 890.337 12231.36 10.94724

Effect

Df S8

SS

S8

MS

S8

F

S8

p

S9

SS

S9

MS

S9

F

S9

p

S10

SS

S10

MS

S10

F

S10

p

Intercept 1 33.82671 33.82671 830.7206 0 36.07684 36.07684 837.6825 0 37.93111 37.93111 840.5676 0

Group 4 4.61395 1.15349 28.3275 0 5.00643 1.25161 29.0616 0 5.35365 1.33841 29.6597 0

Error 182 7.41099 0.04072 7.83827 0.04307 8.21286 0.04513

All 186 12.02494 12.84471 13.56651

Effect

Df S11

SS

S11

MS

S11

F

S11

p

S12

SS

S12

MS

S12

F

S12

p

S13

SS

S13

MS

S13

F

S13

p

Intercept 1 39.43004 39.43004 836.9327 0 40.6712 40.6712 828.2949 0 41.72909 41.72909 826.9931 0

Group 4 5.74025 1.43506 30.4603 0 6.08344 1.52086 30.9733 0 6.34263 1.58566 31.4248 0

Error 182 8.57449 0.04711 8.93662 0.0491 9.1835 0.05046

All 186 14.31474 15.02007 15.52613

Effect

Df S14

SS

S14

MS

S14

F

S14

p

S15

SS

S15

MS

S15

F

S15

p

S16

SS

S16

MS

S16

F

S16

p

Intercept 1 42.58454 42.58454 821.5475 0 43.18434 43.18434 810.207 0 43.43267 43.43267 807.6284 0

Group 4 6.68885 1.67221 32.2606 0 6.91004 1.72751 32.4108 0 7.14216 1.78554 33.202 0

Error 182 9.43389 0.05183 9.70067 0.0533 9.7876 0.05378

All 186 16.12274 16.61071 16.92976
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Effect

Df S17

SS

S17

MS

S17

F

S17

p

S18

SS

S18

MS

S18

F

S18

p

S19

SS

S19

MS

S19

F

S19

p

Intercept 1 43.79899 43.79899 791.0651 0 44.01879 44.01879 789.5424 0 43.88314 43.88314 774.1144 0

Group 4 7.41546 1.85387 33.4831 0 7.60672 1.90168 34.1095 0 7.80634 1.95158 34.4267 0

Error 182 10.07681 0.05537 10.14692 0.05575 10.31725 0.05669

All 186 17.49228 17.75364 18.12359

Effect

Df S20

SS

S20

MS

S20

F

S20

p

S21

SS

S21

MS

S21

F

S21

p

S22

SS

S22

MS

S22

F

S22

p

Intercept 1 43.65499 43.65499 768.6834 0 43.55325 43.55325 756.4018 0 43.12399 43.12399 740.4046 0

Group 4 7.92621 1.98155 34.8915 0 8.05494 2.01373 34.9731 0 8.21022 2.05255 35.2407 0

Error 182 10.33613 0.05679 10.47947 0.05758 10.60037 0.05824

All 186 18.26234 18.53441 18.81059

Effect

Df S23

SS

S23

MS

S23

F

S23

p

S24

SS

S24

MS

S24

F

S24

p

S25

SS

S25

MS

S25

F

S25

p

Intercept 1 42.82046 42.82046 737.004 0 41.88972 41.88972 725.8079 0 41.84728 41.84728 714.4879 0

Group 4 8.26105 2.06526 35.5463 0 8.47667 2.11917 36.7181 0 8.37984 2.09496 35.7687 0

Error 182 10.57433 0.0581 10.50406 0.05771 10.65967 0.05857

All 186 18.83538 18.98073 19.03951

Effect

Df S26

SS

S26

MS

S26

F

S26

p

S27

SS

S27

MS

S27

F

S27

p

S28

SS

S28

MS

S28

F

S28

p

Intercept 1 40.91786 40.91786 701.1788 0 40.61812 40.61812 694.6365 0 39.6158 39.6158 686.3488 0

Group 4 8.47369 2.11842 36.3018 0 8.60742 2.15185 36.8003 0 8.60366 2.15092 37.2649 0

Error 182 10.62076 0.05836 10.64225 0.05847 10.50497 0.05772

All 186 19.09445 19.24967 19.10864

Effect

Df S29

SS

S29

MS

S29

F

S29

p

S30

SS

S30

MS

S30

F

S30

p

FF

SS

FF

MS

FF

F

FF

p

Intercept 1 39.05633 39.05633 682.6337 0 38.47401 38.47401 670.1706 0 765.7183 765.7183 2103.306 0

Group 4 8.72169 2.18042 38.1098 0 8.58977 2.14744 37.4058 0 21.4787 5.3697 14.75 0

Error 182 10.41298 0.05721 10.44849 0.05741 66.2579 0.3641

All 186 19.13467 19.03825 87.7366
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Tukey HSD Post-hoc tests 

 

 

 

 

Effect

Df SHE

SS

SHE

MS

SHE

F

SHE

p

TC

SS

TC

MS

TC

F

TC

p

Intercept 1 1311.812 1311.812 4023.522 0 1.34E+09 1.34E+09 1725.498 0

Group 4 6.234 1.559 4.781 0.001087 2.08E+07 5.19E+06 6.672 0.000049

Error 182 59.339 0.326 1.42E+08 7.78E+05

All 186 65.573 1.62E+08

Group {1} {2} {3} {4} {5}

1 Controls 0.086175 0.000017 0.000017 0.000017

2 CMPI 0.086175 0.000091 0.000017 0.000017

3 CMPII 0.000017 0.000091 0.000026 0.000216

4 CMPIII 0.000017 0.000017 0.000026 0.999473

5 OA 0.000017 0.000017 0.000216 0.999473

Group {1} {2} {3} {4} {5}

1 Controls 0.644768 0.000030 0.000017 0.000017

2 CMPI 0.644768 0.011640 0.000017 0.000017

3 CMPII 0.000030 0.011640 0.035794 0.006960

4 CMPIII 0.000017 0.000017 0.035794 0.943417

5 OA 0.000017 0.000017 0.006960 0.943417

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable F780 (5_class)

Error: MS between groups = .44597, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable F470 (5_class)

Error: MS between groups = .30456, df = 182.00

Group {1} {2} {3} {4} {5}

1 Controls 0.256605 0.004677 0.000017 0.000203

2 CMPI 0.256605 0.702038 0.001031 0.137144

3 CMPII 0.004677 0.702038 0.050407 0.812650

4 CMPIII 0.000017 0.001031 0.050407 0.623070

5 OA 0.000203 0.137144 0.812650 0.623070

Group {1} {2} {3} {4} {5}

1 Controls 1.000000 0.668924 0.064422 0.000017

2 CMPI 1.000000 0.730109 0.148166 0.000018

3 CMPII 0.668924 0.730109 0.802265 0.000164

4 CMPIII 0.064422 0.148166 0.802265 0.008416

5 OA 0.000017 0.000018 0.000164 0.008416

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable DFA (5_class)

Error: MS between groups = .00519, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable VMS (5_class)

Error: MS between groups = .31186, df = 182.00
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Group {1} {2} {3} {4} {5}

1 Controls 0.977649 0.000083 0.000017 0.000017

2 CMPI 0.977649 0.002123 0.000017 0.000017

3 CMPII 0.000083 0.002123 0.000017 0.000017

4 CMPIII 0.000017 0.000017 0.000017 0.079671

5 OA 0.000017 0.000017 0.000017 0.079671

Group {1} {2} {3} {4} {5}

1 Controls 0.999675 0.101052 0.000017 0.000017

2 CMPI 0.999675 0.204035 0.000017 0.000017

3 CMPII 0.101052 0.204035 0.001304 0.000017

4 CMPIII 0.000017 0.000017 0.001304 0.002146

5 OA 0.000017 0.000017 0.000017 0.002146

Group {1} {2} {3} {4} {5}

1 Controls 0.999880 0.465158 0.000017 0.000017

2 CMPI 0.999880 0.617123 0.000017 0.000017

3 CMPII 0.465158 0.617123 0.000017 0.000020

4 CMPIII 0.000017 0.000017 0.000017 0.978906

5 OA 0.000017 0.000017 0.000020 0.978906

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable R4 (5_class)

Error: MS between groups = 4.1519, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable P1 (5_class)

Error: MS between groups = 495.05, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable P2 (5_class)

Error: MS between groups = 34.081, df = 182.00

Group {1} {2} {3} {4} {5}

1 Controls 0.000128 0.000017 0.000017 0.000017

2 CMPI 0.000128 0.167116 0.006434 0.158309

3 CMPII 0.000017 0.167116 0.745676 0.999971

4 CMPIII 0.000017 0.006434 0.745676 0.854759

5 OA 0.000017 0.158309 0.999971 0.854759

Group {1} {2} {3} {4} {5}

1 Controls 0.667651 0.024182 0.000025 0.000736

2 CMPI 0.667651 0.566762 0.022218 0.058922

3 CMPII 0.024182 0.566762 0.502442 0.734927

4 CMPIII 0.000025 0.022218 0.502442 0.999383

5 OA 0.000736 0.058922 0.734927 0.999383

Group {1} {2} {3} {4} {5}

1 Controls 0.513378 0.019710 0.000115 0.001954

2 CMPI 0.513378 0.679416 0.140331 0.183132

3 CMPII 0.019710 0.679416 0.833352 0.889416

4 CMPIII 0.000115 0.140331 0.833352 0.999999

5 OA 0.001954 0.183132 0.889416 0.999999

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable RR (5_class)

Error: MS between groups = .00073, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable DET (5_class)

Error: MS between groups = .00021, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable ENTR 

(5_class)

Error: MS between groups = .05467, df = 182.00
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Group {1} {2} {3} {4} {5}

1 Controls 0.126264 0.000729 0.000017 0.000053

2 CMPI 0.126264 0.626677 0.083897 0.130765

3 CMPII 0.000729 0.626677 0.758200 0.857835

4 CMPIII 0.000017 0.083897 0.758200 0.999983

5 OA 0.000053 0.130765 0.857835 0.999983

Group {1} {2} {3} {4} {5}

1 Controls 0.729850 0.021754 0.000018 0.000196

2 CMPI 0.729850 0.479860 0.003859 0.017292

3 CMPII 0.021754 0.479860 0.266073 0.550093

4 CMPIII 0.000018 0.003859 0.266073 0.997939

5 OA 0.000196 0.017292 0.550093 0.997939

Group {1} {2} {3} {4} {5}

1 Controls 0.396678 0.015866 0.000163 0.002848

2 CMPI 0.396678 0.752255 0.241236 0.309951

3 CMPII 0.015866 0.752255 0.897687 0.942312

4 CMPIII 0.000163 0.241236 0.897687 0.999996

5 OA 0.002848 0.309951 0.942312 0.999996

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable LMAX 

(5_class)

Error: MS between groups = 1796E3, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable LAM (5_class)

Error: MS between groups = .00106, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable TT (5_class)

Error: MS between groups = 4.1005, df = 182.00

Group {1} {2} {3} {4} {5}

1 Controls 0.269492 0.000021 0.000017 0.000017

2 CMPI 0.269492 0.041383 0.000025 0.000017

3 CMPII 0.000021 0.041383 0.168668 0.018253

4 CMPIII 0.000017 0.000025 0.168668 0.842647

5 OA 0.000017 0.000017 0.018253 0.842647

Group {1} {2} {3} {4} {5}

1 Controls 0.649906 0.000138 0.000017 0.000017

2 CMPI 0.649906 0.043003 0.000030 0.000017

3 CMPII 0.000138 0.043003 0.198082 0.023739

4 CMPIII 0.000017 0.000030 0.198082 0.849245

5 OA 0.000017 0.000017 0.023739 0.849245

Group {1} {2} {3} {4} {5}

1 Controls 0.632478 0.000101 0.000017 0.000017

2 CMPI 0.632478 0.037643 0.000027 0.000017

3 CMPII 0.000101 0.037643 0.193315 0.022155

4 CMPIII 0.000017 0.000027 0.193315 0.843821

5 OA 0.000017 0.000017 0.022155 0.843821

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable MSE (5_class)

Error: MS between groups = 38.831, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable S7 (5_class)

Error: MS between groups = .03746, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable S8 (5_class)

Error: MS between groups = .04072, df = 182.00
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Group {1} {2} {3} {4} {5}

1 Controls 0.403102 0.000027 0.000017 0.000017

2 CMPI 0.403102 0.032308 0.000022 0.000017

3 CMPII 0.000027 0.032308 0.160230 0.017486

4 CMPIII 0.000017 0.000022 0.160230 0.846553

5 OA 0.000017 0.000017 0.017486 0.846553

Group {1} {2} {3} {4} {5}

1 Controls 0.040047 0.000017 0.000017 0.000017

2 CMPI 0.040047 0.066739 0.000036 0.000018

3 CMPII 0.000017 0.066739 0.164816 0.027648

4 CMPIII 0.000017 0.000036 0.164816 0.903492

5 OA 0.000017 0.000018 0.027648 0.903492

Group {1} {2} {3} {4} {5}

1 Controls 0.037654 0.000017 0.000017 0.000017

2 CMPI 0.037654 0.077512 0.000050 0.000018

3 CMPII 0.000017 0.077512 0.186034 0.028619

4 CMPIII 0.000017 0.000050 0.186034 0.887937

5 OA 0.000017 0.000018 0.028619 0.887937

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable S14 (5_class)

Error: MS between groups = .05183, df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable S29 (5_class)

Error: MS between groups = .05721 df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable S30 (5_class)

Error: MS between groups = .05741 df = 182.00

Group {1} {2} {3} {4} {5}

1 Controls 0.010740 0.008082 0.000017 0.000253

2 CMPI 0.010740 0.999991 0.201753 0.806584

3 CMPII 0.008082 0.999991 0.132411 0.764348

4 CMPIII 0.000017 0.201753 0.132411 0.870732

5 OA 0.000253 0.806584 0.764348 0.870732

Group {1} {2} {3} {4} {5}

1 Controls 0.656137 0.989391 0.992996 0.047206

2 CMPI 0.656137 0.896338 0.413270 0.000492

3 CMPII 0.989391 0.896338 0.906109 0.012563

4 CMPIII 0.992996 0.413270 0.906109 0.119440

5 OA 0.047206 0.000492 0.012563 0.119440

Group {1} {2} {3} {4} {5}

1 Controls 0.989803 0.805995 0.155193 0.001959

2 CMPI 0.989803 0.549857 0.096726 0.000315

3 CMPII 0.805995 0.549857 0.853753 0.054020

4 CMPIII 0.155193 0.096726 0.853753 0.385136

5 OA 0.001959 0.000315 0.054020 0.385136

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable FF (5_class)

Error: MS between groups = .36405 df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable SHE (5_class)

Error: MS between groups = .32604 df = 182.00

 Cell no.

Tukey HSD Post-hoc tests (unequal N);  Variable TC (5_class)

Error: MS between groups = 7784E2 df = 182.00


